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Visual dynamics cues in learning 
complex physical interactions
christopher J. Hasson  1,2 & paneed f. Jalili1,2

this study investigated the role of visual dynamics cues (VDcs) in learning to interact with a complex 
physical system. Manual gait training was used as an exemplary case, as it requires therapists to 
control the non-trivial locomotor dynamics of patients. A virtual analog was developed that allowed 
naïve subjects to manipulate the leg of a virtual stroke survivor (a virtual patient; Vp) walking on 
a treadmill using a small robotic manipulandum. the task was to make the Vp’s leg pass through 
early, mid, and late swing gait targets. One group of subjects (n = 17) started practice seeing the VP’s 
affected thigh and shank (i.e., VDCs); a second control group (n = 16) only saw the point-of-contact (VP 
ankle). It was hypothesized that, if seeing the VP’s leg provides beneficial dynamics information, the 
VDc group would have better task performance and generalization than controls. Results were not 
supportive. Both groups had similar task performance, and for the late swing gait target, a decrement 
in manipulative accuracy was observed when VDcs were removed in a generalization task. this suggests 
that when learning to manipulate complex dynamics, VDCs can create a dependency that negatively 
affects generalization if the visual context is changed.

The performance of daily life tasks requires humans to interact with both familiar and unfamiliar objects with a 
range of dynamic complexities. Such activities include opening a door, drinking tea, driving a car, or interacting 
with another person. It is thought that humans accomplish this in part by internally modeling the dynamics of 
the interactions. An internal dynamics model (or representation) relates motor commands to object behavior 
as detected by the body’s sensors. These models can be used to predict how an object (or another person) will 
respond to a motor input, and what motor commands are needed to elicit a desired interaction1.

Proprioception has an established and critical role in learning novel dynamics2–4. However, visual cues can 
provide information that is unavailable to proprioception, which may aid in the development and recall of inter-
nal models. The visual presentation of object features (e.g., size, shape, or configuration) can inform expectations 
about static and dynamic object behavior. Seeing the geometry of familiar tools allows humans to correctly brace 
against reaction forces5 and can improve generalization6. Sighted object features can assist with estimation of 
object stability characteristics, mass distribution, and material properties7–9, and may influence how dynamics 
are represented in the nervous system10. Although prior studies have shown that visual dynamics cues (VDCs) 
can benefit learning5–10, they have primarily used objects with relatively simple dynamics (e.g., a hammer, spring, 
or block). It is otherwise unclear whether the benefits would be similar for more complex physical interactions.

An archetypical complex physical interaction is with another person. As an exemplary case, manual gait train-
ing requires therapists to control the complex locomotor dynamics of patients. Following along with a patient’s 
swinging leg and applying forces to achieve a desired kinematic trajectory is not trivial. A therapist must com-
pensate for numerous forces, including those related to linked-segmental dynamics (e.g., gravitational, inertial, 
Coriolis, and centrifugal forces), as well as those from a patient’s muscular contractions. A recent study used a vir-
tual analog of manual gait training to show that healthy adults are capable of forming internal representations of 
pathologic locomotor dynamics while training a simulated patient11. However, this study did not manipulate the 
visual information provided to the trainers, i.e., they could always see the simulated patient’s leg during manipu-
lation. Thus, it is unclear whether the VDCs had a significant impact on the learning outcomes.

Therefore, this study aimed to investigate the role of visual dynamics cues (VDCs) in learning to interact with 
a complex physical system in the form of a locomoting virtual patient (VP). Naïve subjects were asked to manip-
ulate the leg of a virtual stroke survivor walking on a treadmill, which was modeled as an end-point impedance 
that subjects interacted with using a small robotic manipulandum11. Subjects were asked to apply forces to the 
VP’s affected leg to make the VP’s ankle pass through three gait targets, which would normalize the gait pattern 
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with respect to the unaffected leg. One group of subjects (n = 17) started practice seeing the VP’s affected thigh 
and shank; a second group (n = 16) only saw the point-of-contact (the VP’s ankle). If seeing the VPs leg provides 
learning benefits (e.g., by informing expectations about object behavior and constraining the space of possible 
dynamics models), it was hypothesized that subjects who saw the VP’s leg during practice would show improved 
manipulative performance and generalization relative to those that did not (control group).

Methods
Virtual patient (Vp) model. The VP was modeled as an end-point impedance that subjects interacted with 
using a small robotic manipulandum (GeoMagic Touch, 3D Systems, Andover MA). Full details of the model, 
which was based on previously collected data on stroke survivors12, are reported in Hasson and Goodman11. 
Using this stroke survivor data, a reference VP kinematic trajectory was specified (Fig. 1; red trajectory). The 
step pattern associated with this reference trajectory (representing the affected leg) had a smaller step height and 
width compared to the unaffected leg. When subjects applied a force that made the manipulandum deviate from 
the reference trajectory, they experienced an impedance force FIMP as

= + +F F F Fa( ) (1)IMP D M T

where the quantities FD, FM, and FT are vectors of forces that represent the anterior-poster and vertical compo-
nents of impedance forces due to rigid body dynamics (FD), neuromuscular contributions (FM), and a treadmill 
interface (FT). The scaling factor a was determined through experimentation (a = 1/12 and was chosen so that the 
amount of manipulative force applied by subjects to move the VP into a “healthy” trajectory was large enough to 
be significant without leading to fatigue (1–2 N).

Model details. The rigid body forces FD that subjects felt when manipulating the VP’s leg were specified by

θ θ θ θ θ θ θ θ∆= Δ + Δ +− ̈
 F J V GI( ) [ ( ) ( , ) ( ) ] (2)D

T

where I(θ), V(θ,θ) and G(θ) are matrices that specify inertial torques, centrifugal and Coriolis torques, and grav-
itational torques, respectively (details for I, V, G are in Hasson and Goodman11). The quantities θ = [θh,θk]T, 
θ = [θh

 , θk]T, and [ , ]h k
Tθ θ θ= ̈ ̈  are vectors of joint angles, velocities, and accelerations, respectively. The sub-

scripts h and k represent the VP hip and knee joints (superscript T denotes transposition). The quantities, Δθ, 
Δθ, and ̈θΔ  are difference vectors between the hip and knee angular kinematics of the reference stroke-survivor 
model and the kinematics of the VP as controlled by the subject (if the subject moves the manipulandum along 
the reference trajectory, these difference vectors are zero and the subject feels no rigid body kinetics). The rigid 

Figure 1. Schematic of virtual patient model. When a subject moved the manipulandum in a way that caused 
the virtual patient kinematics (pM, pM, and ̈pM, i.e., the virtual patient’s ankle position, velocity, and acceleration, 
respectively; green linked-segments and trajectory) to deviate from the reference stroke model kinematics (pR, 
pR, and pR̈; red ankle trajectory), the subject felt an impedance force that depended on programmed rigid body, 
muscular, and treadmill dynamics (the force exerted by a human trainer is shown as FT).
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body torques are mapped to end-point forces through multiplication with the inverse transpose of the Jacobian 
J−T, defined as
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where Lt and Ls are the VP thigh and shank lengths, respectively, and θhk = θh + θk. The angular kinematics of the 
hip and knee can be similarly mapped to end-point kinematics for the reference model ankle joint position, veloc-
ity, and acceleration (pR, pR, and pR̈, respectively; Fig. 1) and the manipulandum (VP ankle) position, velocity, and 
acceleration (pM, pM , and ̈pM, respectively; Fig. 1)

Neuromuscular impedance forces (FM) depended on three quantities: a muscular spring stiffness KSPR, a 
geometric stiffness KGEO, and a damping factor B. The quantity KSPR(θ, ψh) modeled the spring-like action of 
human musculotendon units, which was a function of the segmental geometry θ and a variable-stiffness rota-
tional hip spring with stiffness ψh, which was previously estimated from real patient muscular moments M and 
joint kinematics during locomotion11,12. KGEO(θ, M) modeled how the limb endpoint stiffness due to muscular 
action is affected by skeletal geometry in the presence of a contact force13, which was a function of θ and M. 
Finally, damping B(KSPR) simulated the viscous effects of velocity-dependent muscular properties14, which was 
proportional to KSPR. These viscoelastic effects were expressed as

θ ψ θ= + +F K K M p B K p[ ( , ) ( , )] ( ) (4)M SPR h GEO err SPR err

where perr and perr  are difference vectors between the stroke reference and actual VP ankle (manipulandum) posi-
tions (pR − pM) and velocities (pR − pM), respectively (details for KSPR, KGEO, and B matrices can be found in 
Hasson and Goodman11).

Finally, a treadmill was created with a virtual spring (stiffness kN = 2.0 N/mm) that slid along a semicircular 
arc beneath the VP. A semicircular treadmill was needed because the VP’s leg was short one degree of freedom 
(the foot). An additional anti-slip spring (kS = 0.7 N/mm) prevented slipping due to frictional forces and dragged 
the VP leg rearwards during the stance phase. The net treadmill impedance force (FT) was given by

ˆ= − + − F p p p pk k b( ) (5)T M M err MN S

where pMˆ  − pM is a penetration vector, representing the difference between the actual manipulandum position pM 
and the projection of the manipulandum position on the treadmill surface pMˆ , and b is a damping factor (b = 0.002), 
which increased fivefold (5b) at heel-strike for 0.1 s, linearly ramped down to 1b over the next 0.1 s, and thereafter 
remained at 1b until the next heel-strike. FT was set to zero if the ankle was above the treadmill surface.

Subjects. Thirty-three young adults were randomly assigned to either a VDC group (n=17; 10 female, 7 
male; age: 22 ± 1.7 yrs [mean ± SD]; height: 1.7 ± 0.1 m; weight: 67 ± 11 kg;) or a control group (n = 16; 11 female, 
5 male; age: 24 ± 4 yrs [mean ± SD]; height: 1.7 ± 0.1 m; weight: 67 ± 10 kg). The VDC group was able to see the 
VP’s leg during practice and the control group never saw the VP’s leg. All subjects were healthy and free from 
neurological and musculoskeletal impairments affecting upper extremity control and gave informed consent. The 
procedures were approved by the Northeastern University Institutional Review Board and performed in accord-
ance with the relevant guidelines and regulations.

task instructions and goal. Subjects were told that they were interacting with a simulation of a stroke 
survivor (VP) walking on a treadmill and that if they push or pull on the manipulandum, the force is transferred 
to the VP’s ankle. Instructions were to make the VP’s ankle pass through three gait targets (Fig. 2). These targets 
were: early, mid, and late swing, corresponding to 78, 88, and 100% of the VP’s gait cycle, respectively. These tar-
gets were selected from the average ankle trajectory of the unaffected leg for the stroke survivors upon which the 
model was based (hitting the gait targets increased VP gait symmetry).

Visual display. All subjects saw the VP’s ankle (the interaction point), the three gait targets, a curved line represent-
ing the ground, and a magenta “tail” that followed the ankle to provide a visual indication of the ankle’s two-dimensional 
path (Fig. 2). Importantly, the VDC group also saw two linked segments representing the VP’s thigh and shank. For 
both groups, a small rectangular tracker was presented when the VP’s leg was in contact with the treadmill to help 
subjects maintain proper step timing (because other timing-related visual information normally available during real 
gait training, such as a patient’s contralateral leg, was absent). The timing cue slid along the treadmill, becoming vis-
ible at heel-strike and disappearing at push-off. An audible beep was provided at heel-strike to assist with pacing. All 
programming associated with the virtual patient model and visual display was performed in C++ (Microsoft Visual 
Studio 2010 Professional, Version 10.0.30319.1 RTMRel; Microsoft Corporation, Redmond, WA).

initial practice. Both groups began practice in a null-dynamics condition (two trials of 80 steps; Fig. 3). 
The VDC group saw the VP’s leg and the control group did not. In this condition, subjects only experienced the 
treadmill model and felt no impedance forces from the VP (i.e. FD = FM = 0). The purpose of the null-dynamics 
condition was to allow subjects to become familiar with the task and interface. Next, subjects practiced the task 
with impaired-dynamics (Impaired Dynamics I). In this condition, subjects felt as if they were holding onto the 
leg of a miniature stroke patient (the VP) and had to apply appropriate forces to move the VP’s ankle through the 
three gait targets. In this condition, subjects performed four 80-step trials; the leg remained visible for the VDC 
group and absent for the control group. A one-minute rest was provided between each trial.
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Generalization tests. After initial practice, subjects performed two generalization tests. The early swing 
gait target was shifted 1.45 mm upwards (a 42% increase) and 0.24 mm to the right (see Fig. 3). The mid-swing 
gait target height was increased by 1.21 mm. The late swing target was not changed. These target shifts required 
subjects to make the VP perform an exaggerated heel-lift during push-off. To facilitate group comparisons, the 
generalization test was performed without the VP’s leg displayed so that both groups would have the same visual 
display. The first 30-step generalization test (Generalization I) was performed after Impaired Dynamics I. After 
more practice with the original targets (Impaired Dynamics II), a second 30-step generalization test was per-
formed (Generalization II), but in this case, the VDC group had the opportunity to practice without seeing the 
leg before the target locations were changed (Impaired Dynamics III). This enabled the separation of two effects 
in the VDC group: one from the removal of the displayed leg segments and one due to switching target locations 
(Generalization I did both).

Figure 2. Illustration of visual feedback seen by study participants. The visual dynamics cues (VDC) group saw 
the affected leg of a virtual patient locomoting on a treadmill (left image) while a control group only saw the 
end-point (i.e., the ankle; right image). The white dots show early, mid, and late swing gait targets. For the VDC 
group, the leg segments are shown in green. For both groups, the end-point and trailing trajectory are shown in 
purple. The red curve at the bottom represents the path of the leg on the treadmill. The images show the affected 
leg during the swing phase after passing the mid-swing target, with the leg moving towards the right. The 
unaffected leg was not shown.

Figure 3. Experimental protocol for virtual locomotor manipulation task. The visual dynamics cues group 
received visual feedback of the virtual patient’s thigh and shank segments during the Null Dynamics block 
and the Impaired Dynamics I and II blocks. The control group saw only the patient’s ankle (the end-point) 
throughout the experiment.
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probe steps. Errors made during unexpected changes in dynamics can reveal information about human senso-
rimotor control strategies15. Thus, each subject experienced four unexpected null-steps during the last practice trial 
before the second generalization test (Impaired Dynamics III; see Fig. 3). In these steps, the VP rigid-body and neu-
romuscular impedance forces were turned off during the middle of the stance phase (the treadmill model remained 
in effect). Mid-stance was chosen as the initiation point because kinematic errors (and hence FD and FM impedance 
forces) are negligible at this time. The VP impedance forces remained off throughout the stance phase and were turned 
back on after the VP’s leg completed its swing (when the forward velocity of the VP’s ankle changed sign). The null-step 
numbers were selected from uniformly distributed pseudo-random integers in the span of 5–80 and were randomized 
within each subject; thus, null-step numbers differed across subjects. Each null-step had to be at least 4 steps from 
neighboring probe steps, if not a new random number draw was performed until the requirement was satisfied.

Data reduction and analysis. The root-mean-squared error (RMSE) quantified task performance, deter-
mined as the smallest Euclidean distance between the manipulandum trajectory (the VP’s ankle) and the early, 
mid, and late swing gait targets (in two-dimensions). The RMSE was averaged across the first four steps of each 
practice condition to capture early practice performance, and across the last 20 steps to capture late practice per-
formance (a shorter time scale was used for early practice because the changes are more rapid). For the null-step 
analysis, the absolute RMSE and relative change in RMSE (ΔRMSE) were computed for each gait target and 
null-step in the Impaired Dynamics III condition. For a given null-step, the ΔRMSE was calculated by subtracting 
the average RMSE during the four preceding regular (non-null field) steps from the RMSE on the null-step; thus, 
a positive ΔRMSE indicates the RMSE increased on the null-step. Since the null-step numbers were newly ran-
domized for each subject (i.e., the null-step numbers differed across subjects), the absolute and relative null-step 
RMSEs were averaged across the four null-steps within each subject. For all analyses outliers were detected using 
Tukey fences16. If for a given condition and time point (early or late practice), a subject’s mean RMSE was outside 
±2.7 standard deviations (a 99.3% confidence interval), the value was excluded from further analysis (3.5% of 
data). All analysis procedures were performed in MATLAB (ver. 9.4, R2018a; Mathworks, Natick MA).

Statistics. The effects of VDCs cues on learning locomotor dynamics were assessed with a mixed models 
analysis. Group (VDC or control), Condition (Null Dynamics, Impaired Dynamics I, Generalization I, Impaired 
Dynamics II, Impaired Dynamics III, and Generalization II), and time (early vs. late practice within a condition) 
were included as fixed effects, with repeated measurements on condition and time (first-order autoregressive 
covariance structure). Subject ID was included as a random effect. The dependent variables were the RMSE for 
the early, mid, and late swing gait targets. The alpha level was 0.05 and all tests were two-tailed, which were per-
formed in SPSS (ver. 25; IBM, Armonk, New York). The Benjamini-Hochberg (BH) step-up procedure17 was used 
to control for multiple comparisons with a tolerable false-discovery rate Q of 0.118. BH critical values (BHCRIT) 
were calculated as BHCRIT = Q(i/m), where m is the number of tests (m = 12) and i is the p-value rank (smallest to 
largest). BH adjusted p-values are reported as “q” values, where q = p(m/i) and p is the raw p-value. Independent 
samples t-tests were performed to compare the absolute and relative null-step RSME between the VDC and con-
trol groups during the Impaired Dynamics III condition for each gait target.

Results
Subject skill was assessed by the RMSE between the manipulandum (the VP’s ankle) trajectory and the early, 
mid, and late swing gait targets. For the early swing target both VDC and control groups reduced their error 
with practice (time main effect; F1,151 = 45.71, p < 0.001) with no effect of VDCs on RMSE (Fig. 4; no group main 
effect; F1,79 = 0.50, p = 0.482). However, for the mid and late swing targets, there was a three-way interaction, 
indicating that there was an effect of visual cues on RMSE, but that the effect depended on the condition and time 
(mid-swing: F5,204 = 8.48, p < 0.001; late swing: F5,280 = 2.43, p = 0.047). Although three-way interactions can be 
difficult to interpret, the results in Fig. 4 show that there was an effect of seeing the leg for the mid and late swing 
targets, but only for specific time points and conditions. This is explored further by analyzing pairwise differences.

Pairwise comparisons showed that for the mid-swing target during early practice in Null Dynamics, the VDC 
group had larger errors than the control group (early practice p < 0.001 and q < 0.001), such that the VDC group 
significantly overshot the target (signed vertical error = 0.88 ± 0.82 mm; mean ± s.d.). Note that reported q-values 
are derived from the BH step-up procedure and are compared against the specified tolerable false-discovery rate 
(i.e., if q < 0.1 then the test remains significant). For the mid-swing target, both groups had a similar RMSE at 
the end of the Null Dynamics condition, and the group RMSEs remained similar throughout the rest of practice 
(the VDC group had a larger RMSE than controls during early practice in Impaired Dynamics II, but this was not 
significant after adjusting for multiple comparisons; p = 0.024 and q = 0.144). For the late swing target, the VDC 
group had a larger RMSE during early practice in Generalization I (p < 0.001 and q = 0.012), during late practice 
in Impaired Dynamics II (p = 0.015 and q = 0.090), and during early practice in Impaired Dynamics III (p = 0.016 
and q = 0.064). By the end of Impaired Dynamics III, the group RMSE’s were similar (p = 0.094 and q = 0.161).

To illustrate the nature of the errors made, scatterplots show the points of minimum RMSE, i.e., the clos-
est approach of the VP’s ankle to the early, mid, and late swing gait targets in the Impaired Dynamics I and 
Generalization I conditions (Fig. 5). Upon inspection, it is evident that each gait target had a distinct distribution 
of errors, with high asymmetry in the late swing target. The latter is due to the geometry of the VP’s leg and the 
constraints imposed on the VP, i.e., a fixed hip joint, hinged-rigid bodies that cannot pull apart (dislocate), and 
an arcing treadmill that compensated for the lack of a VP foot. Most errors for the late swing target reflected 
undershoots, in which the VP’s leg fell short and never reached the target. Note that few points are seen past the 
late swing target because only the closest-approach is marked, so if the late swing target was passed, it is likely that 
the VP’s ankle would make a closer approach on its way back as the VP’s leg comes into contact with the virtual 
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treadmill. The late swing target is where the greatest group differences were found, with the VDC group having 
larger undershoot errors when the targets were shifted in Generalization I (see Fig. 4 and detail panels in Fig. 5).

Near the end of practice, during Impaired Dynamics III, subjects were exposed to four unexpected 
null-dynamics steps to probe the strength of participants’ internal representations. During these steps, subjects 
did not feel any impedance forces as they tried to lift the VP’s foot from the ground. As illustrated in Fig. 6, the 
VDC group had a smaller absolute and relative RMSE for the early swing target during the null-steps (absolute 
p = 0.037; relative p = 0.005). There were no group differences in null-step RMSE for the mid-swing target (abso-
lute p = 0.803; relative p = 0.948) and late swing target (absolute p = 0.702; relative p = 0.406).

Discussion
In the context of a novel locomotor training task, i.e., training a virtual patient (VP) walking on a treadmill, this 
study tested the hypothesis that visual dynamics cues (VDCs) facilitate a human trainer’s ability to learn and 
manipulate locomotor dynamics. This was based on the rationale that seeing the geometry of the VP’s leg could 
provide dynamics-relevant visual cues that may engender prior experiences with leg-like objects (i.e., linked 
segment systems influenced by gravitational, inertial, Coriolis, centrifugal, and in this case, muscular kinetics). 

Figure 4. Task performance. Average root-mean-squared error (RMSE) for the early, mid, and late swing 
gait targets for the visual dynamics cues (VDC) group (red dashed line) and the control group (blue) while 
practicing the virtual locomotor training task. *Significant pairwise group comparisons after Benjamini-
Hochberg procedure with false-discovery rate (FDR) of 0.1. †Non-significant after controlling FDR. Standard 
errors shown.
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This, in turn, could constrain the space of to-be-learned internal dynamics representations. The results suggest 
that VDCs did cause participants to invoke prior dynamics experiences; however, the hypothesis was not sup-
ported. VDCs failed to provide a learning benefit and in some cases (i.e., the late swing gait target), VDCs created 
a dependency that became apparent when the VP’s leg display was removed in a generalization task.

Influence of visual dynamics cues on initial dynamics expectations. Showing the leg during the ini-
tial null-dynamics trials appeared to instantiate a specific set of expectations about what impedance forces would 
be felt by participants. Subjects who could see the VP’s leg (VDC group) lifted it too high during the swing phase, 
while those who only saw the ankle interaction point (control group) did not show this bias. It could be that 
upon seeing the leg, subjects expected to feel its weight and adjusted by lifting upwards to provide (unnecessary) 
support. This occurred even though subjects were explicitly told that, during the initial null-dynamics trials, they 
would not feel forces from the VP’s leg and they only had to trace through the air. This is consistent with evidence 
that explicit knowledge about an object’s properties (e.g., mass) supplied by non-proprioceptive modalities is not 
sufficient to override prior experiences, i.e., sensorimotor errors are needed to update internal models19.

An alternative explanation is that the large mid-swing target errors during the initial null-dynamics trials 
arose from the two-thirds power law, i.e., the inverse relation between movement curvature and speed20. After 

Figure 5. Detail of task performance showing error distributions. Each point represents the closest approach of 
the VP’s ankle (and manipulandum) to the early, mid, and late swing gait targets (ES, MS, and LS, respectively) 
for all steps and all subjects in the Impaired Dynamics I and Generalization I practice blocks. The red dots are 
from the visual dynamics cues (VDC) group and the blue dots are from the control group. The gray trajectory 
represents a fictitious “healthy” gait trajectory that was not shown to subjects. The gait targets, which subjects 
did see on the visual display, are shown as black and yellow squares with a white dot marking the center to 
enhance contrast. The green arc is the virtual treadmill surface.

Figure 6. Null-step performance. The absolute root-mean-squared error (RMSE) and relative change in RMSE 
during the null-steps for the early, mid, and late swing gait targets (ES, MS, and LS, respectively), applied 
during the Impaired Dynamics III condition. The visual dynamics cues (VCD) group (red hatched bars) began 
practice seeing the virtual patient’s leg while the control group (blue bars) only saw the virtual patient’s ankle. 
*Significant group differences. Standard errors shown.
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passing the early swing target, high curvature of the ankle trajectory is needed: the VP’s ankle must arc downward 
to hit the mid-swing target. Although the VP leg’s pendular dynamics would normally facilitate this motion, they 
were absent in the initial null-dynamics trials. Therefore, subjects may have rounded-off the VP’s ankle trajectory 
instead of slowing down. However, if this were true, it would be expected to affect both groups similarly, yet the 
control group was able to achieve the necessary curvature to reach the mid-swing target. Therefore, it is more 
likely that the high mid-swing error in subjects who initially saw the VP’s leg arose from their prior experiences, 
i.e., large body parts are usually heavy, brought about from the visual cues of the VP’s leg.

Effects on task performance and generalization. The results did not support the hypothesis that VDCs 
facilitate learning complex dynamics. Once the impaired locomotor dynamics were turned on (during Impaired 
Dynamics I), the subjects who could see the VP’s leg (VDC group) were able to achieve a level of manipulative 
accuracy close to that of participants who only saw the VP’s ankle (control group). Notably, group differences 
were observed for the generalization tests, which shifted the gait target positions. This required the manipulan-
dum to be moved along a different path that changed the forces required for task success. To facilitate compar-
isons, both subject groups performed the generalization task under identical feedback conditions (end-point 
visual feedback only), meaning that the VDC group had to perform the task without seeing the VP’s leg. Although 
both groups performed similarly for the early and mid-swing targets, the VDC group had worse generalization 
for the late swing target, and only improved their accuracy in this condition after they were able to practice with-
out seeing the VP’s leg.

These generalization outcomes showing no VDC benefits contrast with those of a recent study by Sadeghi and 
colleagues6. In their study, subjects who practiced a task seeing the configuration of a virtual hammer (a circular 
handle with a mass on the end) had better generalization than those who used the same tool but saw an ambig-
uous display without the hammer head. Using a computational model, the authors concluded that seeing VDCs 
improved subjects’ ability to transfer learning across different object actions (directions of hammer rotation) and 
that VDCs appeared to be a significant determinant of generalization relative to the information participants 
received from physical interaction (proprioception). These different study outcomes are likely because Sadeghi 
et al. tested participants under the same visual conditions, i.e., those who practiced while seeing the hammer 
geometry also saw it on generalization tests, and vice-versa. On the other hand, the present study used a mixed 
within/between subjects study design; the VDC group performed the generalization test without seeing the leg.

In the present study, the failure of VDCs to facilitate generalization can be most readily explained by the 
specificity of practice premise, i.e., retention and generalization are maximized in the same sensory context21. 
When the VP’s leg was visible during initial practice, participants may have used the geometry of the thigh and 
shank for error correction, leading to a dependency that became apparent when the subjects switched to practice 
a different generalization target arrangement without seeing the VP’s leg. This echoes the results of Proteau and 
colleagues22, who asked subjects to practice an aiming task and showed that when visual feedback of their own 
limbs was removed performance became worse in comparison to a control group who only saw end-point feed-
back. One could also speculate that the visual display of the leg influenced how participants internally represented 
the dynamic structure of the VP. If for example, the VDC group learned to represent the VP state in angular coor-
dinates, an end-point transformation may have been needed to determine how much force to apply at the VP’s 
ankle (e.g., J(θ)−T [Eq. 3]; n.b., it is not implied that the nervous system uses this equation explicitly). However, 
when the VP leg segments were visually removed this learned transformation may no longer be helpful.

Finally, the observed group differences in the unexpected null step responses suggest that subjects in the VDC 
group may have incurred a “switching cost” in terms of adaptation. Specifically, the group who practiced seeing 
the VP’s leg had smaller null-step errors for the early swing target, which may reflect higher antagonistic muscular 
co-activation due to greater uncertainty in dynamics representations23. Note that in these types of catch events, a 
larger error is thought to reflect stronger adaptation in a deterministic environment24. Thus, the null steps suggest 
less adaptation in the VDC group. Group differences in null-step responses were not observed for mid and late 
swing targets, which is likely because subjects had sufficient time to initiate corrective actions before reaching 
these targets. In this regard, force channels are a useful type of probe because they clamp kinematic errors and 
allow longer time scales to be investigated25. A previous study using the same VP gait training task implemented 
force channels by locking the VP’s ankle motion to a predefined target trajectory11. However, in the present study, 
force channels could not be used because there was no target trajectory, only discrete gait targets.

Limitations. The results discussed above should be interpreted in the context of the study’s limitations: (1) 
Without further experiments, it is unclear whether the results would extend to different motor tasks, including 
the physical manipulation of a real person. (2) It is impossible to know what subjects were looking at without 
eye-tracking measurements, i.e., whether the VDC subjects foveated on the leg segments or something else. (3) 
Additional experiments and visual manipulations would be needed to make broader inferences about the effect 
of the visual display and other types of visual cues. (4) In this study the hypothesis did not test the specific mech-
anism(s) by which visual cues could act on internal representations (e.g., by restricting the choice of models, 
activating existing models, etc.); this would require a different study design and/or computational models of the 
human neural control system (e.g., see Sadeghi and colleagues6). (5) The mismatch in subject expectations during 
the initial null-dynamics trials for the VDC group could mask VDC benefits. Therefore, it is unknown whether 
VDC would facilitate learning if the VDC subjects started practice with impaired leg dynamics, which would 
be more congruent with subject expectations. Nevertheless, both subject groups had similar performance at the 
end of the initial null-dynamics practice block, which weighs against this possibility. (6) The extent to which the 
control group’s performance on the task depended on them knowing that they were interacting with a locomoting 
VP is unknown. The task instructions were the same for all subjects so that any observed differences would be due 
to the manipulation of the VDCs and not asymmetrical withholding of information.
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implications. The present results add qualifiers to the conclusions of prior research showing that VDC 
enhances generalization in tool-use6. Generalization benefits may not extend to different sensory contexts and 
may erode as dynamics complexity increases (but note that further study is needed to firm these conclusions, 
e.g., by comparing sensory and dynamics manipulations within the same study population and task context). 
Ultimately, the findings convey an intuitive message in-line with the specificity-of-practice premise26: it is best 
to practice under the same visual conditions one would expect to encounter in real situations. If at some point 
VDCs may become unavailable, it may be better to practice without them, as there did not appear to be any 
learning deficit in the group that never saw the VP’s leg. This is well known by pilots, who often train for low- or 
null-visibility conditions (e.g., in clouds) using black-out hoods that obscure visual cues outside the cockpit. The 
results may also be of particular relevance in virtual and augmented reality, which can readily add or overlay 
visual information that is normally unavailable, for example through the use of interactive mirrors27,28.

Data Availability
The authors will make the data available upon request.
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